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Abstract

Cardiac models are an important tool for understanding
the causes of arrhythmias and other types of heart disease.
Numerical simulations of these models require small time
steps to make accurate predictions, leading to long simu-
lation times even with programs parallelized over space.
Parallelization over time presents a promising approach to
increase the speed of cardiac simulations and to fully uti-
lize highly parallel modern architectures. This study eval-
uates the use of the parareal algorithm, a parallel-in-time
integration method for solving differential equations, for
simulations of cardiac cells and tissue. The parareal al-
gorithm estimates the system state at fixed times, then it-
eratively refines these estimates by solving from the pre-
vious time estimate in parallel. Thus, fast convergence to
an accurate solution is necessary for this method to be vi-
able. We perform simulations of the Beeler-Reuter (BR)
model to evaluate the accuracy and speed of this method
in comparison to sequential algorithms. We demonstrate
that the parareal algorithm converges exponentially to the
true solution in the single-cell case and accurately repro-
duces APD dynamics in tissue simulations, while attaining
speedup relative to the serial algorithm in both cases.

1. Introduction

Parallel hardware is widely available in modern com-
puters in the form of multi-core central processing units
(CPUs) and graphics processing units (GPUs). Taking
full advantage of these resources to solve computationally-
intensive problems requires the use of parallel algorithms.
A common and effective strategy for simulations of car-
diac electrophysiology is to parallelize over the spatial di-
mensions of the problem domain. However, spatial paral-
lelization lacks impact when the domain is small relative
to the number of available processors and is not applicable
to single-cell simulations.

Although computers are now fast enough to perform
many types of cardiac simulation in real time or faster [1],
further speedup of cardiac simulations may facilitate
studying problems that require long time scales. Examples
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of such problems include the effects of circadian rhythms,
which have been shown to change the behavior of ion
channels in cardiac cells throughout the day [2]], and tissue
remodeling, which has been shown to have proarrhythmic
effects over the course of weeks to months [3,/4].

Parallel-in-time algorithms offer a promising addition to
the toolbox of parallelization techniques in cases where
parallel-in-space methods are either not applicable or of
limited benefit. Here, we focus on the parareal algorithm,
an iterative method based on existing serial methods of
solving differential equations.

2. Methods

2.1. Parareal algorithm

The parareal algorithm is a method of solving initial-
value problems that allows some computations to be per-
formed in parallel [5]]. Notably, an approximate solution is
found at a given time independently from a fully accurate
solution at previous times [6]]. The method solves systems
of ODEs (or spatially-discretized PDEs) of the form

u="f(u) over t¢€l[ty,tn] given u(tg) =ug (1)

at equally spaced time points tg, ¢1,...,tN.

Parareal requires two propagation operators: the coarse
operator G(t1,t2,uy) and the fine operator F'(tq,ta,uy).
Each provides an approximate solution to u(tz) from the
initial condition u(¢;) = u; however, the fine operator
uses a finer time step and thus is assumed to give a more
accurate approximation than the coarse operator.

The first step of the parareal algorithm is to compute an
initial approximation U?l at each coarse time point ¢,, by
sequentially calculating

UL,y = Gltn, ty1,UY) with U)=ug.  (2)

Further iterations for a given time step of the parareal al-
gorithm are computed in parallel for £ = 0,1, 2, ... using
the correction step

Uﬁill = G(tn7tﬂ+17 UfL—H) + F(tnathrl,UZ)

3)
— G(tn,tny1, UF).
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The values of Uf; converge for large enough £ to the accu-
racy of the fine operator U,, 11 = F (5, tnt1, Up) [0].

2.2. Implementation

All simulations use the Beeler-Reuter model of car-
diac membrane action potentials [7], implemented in For-
tran with its original parameter values. The fine and
coarse propagators use a semi-implicit Euler time-stepping
method with time steps of 0.02 ms and 0.1 ms, respectively.
Our implementation of the parareal algorithm uses MPI to
compute F(t,,tn41, U") in Equation [3|in parallel when
iterating over n.

One-dimensional tissue simulations use a spatial do-
main discretized into 512 grid points with a spacing of
0.025 cm, diffusion coefficient 0.0011 cm?/ms, and no-flux
boundary conditions. Simulations begin at a rest state and
are paced at regular intervals starting at time ¢ = 0s with
a pacing stimulus of 26.4 uA/cm? applied for 2 ms. In the
case of the one-dimensional tissue simulation, the stimula-
tion occurs at three tissue points at one end of the domain.

3. Results

3.1.  Single-cell simulations

The parareal algorithm is well-suited to parallelizing
single-cell simulations, as they have no spatial domain to
exploit for parallelism. Figure [T] shows a comparison of
the time series for the last two seconds of two different
120-second simulations: one serial (black solid), the other
using two iterations of the parareal algorithm (red dashed).
The results are in good agreement with very small differ-
ences. The most significant difference in the parareal so-
lution is that the action potential upstroke lags slightly be-
hind that of the serial solution, although some discrepancy
also occurs during repolarization. The error in the repolar-
ization phase occurs in cases, such as in the figure, where
some alternans is present. When no alternans is present,
such as when the cycle length is 400 ms, the error is con-
centrated almost entirely in the upstroke. As the number
of parareal iterations increases, the maximum error at any
point in time decreases at an exponential rate, as seen in
Figure 2] This convergence allows straightforward esti-
mation of the number of parareal iterations necessary to
achieve a desired accuracy.

3.2. One-dimensional tissue simulations

In one-dimensional tissue, the parareal algorithm does
not attain the same rapid convergence as with the single-
cell case. As shown in Figure[3] significant error arises at
the front of each excitation wave, which can only be elimi-
nated by a large number of parareal iterations (on the order
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Figure 1. Above: Time series of the voltage for the last
2s of a 120s simulation with cycle length 280 ms. The
parareal solution after two iterations is shown. Below: Er-
ror from the same simulation measured as the difference
between the parareal solution and the serial solution.

of 10! to 102, and increasing with domain size). This ef-
fect is the result of the parareal solution attaining slower
wave propagation than the serial solution by about 5.4 %.
Increasing the number of parareal iterations results in a de-
crease in the conduction velocity (CV) error. As shown
in Figure ] this convergence is linear, so that many iter-
ations are required to eliminate the error entirely. When
no alternans is present (cycle length 400 ms), the differ-
ence in APD between the two simulations is less than 1 %
when measured at a threshold of —60 mV, indicating that
the qualitative behavior is captured well by the parareal
simulation. However, in the alternans case (cycle length
350 ms), the difference in APD is larger because of the role
of CV during alternans dynamics for this model.

3.3. Speedup

Additional iterations of the parareal algorithm require
additional computation time and the speedup provided by
parallelism becomes less significant. A plot of the speedup
relative to the serial algorithm for varying numbers of iter-
ations is presented in the left plot of Figure[5] The parareal
solver is faster for all cases shown, but becomes slower
with enough iterations. Thus, parareal is only practical in
scenarios where it quickly converges to the serial solution.

The speedup provided by the parareal algorithm in-
creases with the number of processors, up to the limit im-
posed by the serial component of the parareal algorithm,
which consists of running the coarse propogator. The right
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Figure 2. Maximum difference between the parareal solu-
tion and the serial solution, plotted on a logarithmic scale,
for varying numbers of parareal iterations. A shorter cy-
cle length of 280 ms (squares) results in greater error than
a cycle length of 400 ms (circles), but both converge ex-
ponentially to the serial solution. The simulation time for
both cases is 120s.

plot in Figure [5] shows the speedup relative to the serial
algorithm resulting from increasing the number of proces-
sors up to 16. The results are consistent for both single-cell
and tissue simulations. In both cases, at least 6 processors
are required for the parareal simulation to run faster than
the serial simulation.

4. Discussion

We show that the parareal algorithm is capable of par-
allelizing simulations of cardiac cells and tissue across the
time domain, with convergence to the serial solution oc-
curring quickly for the case of a single cell and leading to
significant speedup on a 16-core processor. Parareal also
achieves good accuracy and speedup in terms of APD in
the one-dimensional tissue simulation; when discordant al-
ternans is present, the slightly reduced wavespeed in the
parareal case can lead to larger APD errors.

The parareal algorithm requires significantly more com-
putation than the corresponding serial algorithm. There-
fore, parareal is most useful in cases where parallel hard-
ware is already available but not utilized, as is often the
case for computers with multi-core CPUs or GPUs running
serial algorithms. A further restriction on the efficiency of
parareal is that each iteration requires additional computa-
tion, so the rate of convergence to the serial solution must
be fast in practice for parareal to produce accurate results
while providing significant speedup.

In cases where parallelism over the spatial domain is
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Figure 3. Above: Heatmap showing the voltage over a
one-dimensional domain for the last 2s of a 12s simula-
tion using three iterations of the parareal algorithm and a
cycle length of 400 ms. Below: Heatmap of the error of
the parareal solution relative to the serial solution. The er-
ror is concentrated along the front, and to a lesser extent
the back, of the propagating wave, which travels slower in
the parareal simulation.

possible, the amount of spatial parallelization is limited
by the domain size, as eventually the computational cost
of communication will outweigh the benefits of increased
parallelism. The time dimension, on the other hand, may
be extended arbitrarily without increased communication
costs. An advantage of parareal is that it can be used in
combination with spatial parallelization, so an optimal re-
source allocation may be attained when large-scale paral-
lelism is available by parallelizing across space and time
domains simultaneously. This strategy requires careful ap-
plication depending on the specific problem to solve and
the hardware available to solve it.

The efficiency of the parareal algorithm may be im-
proved by adjusting the relative computational cost of the
coarse and fine solvers. Parareal is most efficient when the
fine solver is more costly than the coarse solver. There-
fore, using stable implicit or semi-implicit methods that
allow large coarse time steps will result in greater speedup
of the parareal algorithm, even if the accuracy of the coarse
solver at this time step is low. Similarly, whenever a high
degree of accuracy is desired, requiring either a costly
high-order integration method or a very small time step,
the fine solver must become more costly to meet these
criteria. If the coarse solver is unchanged, the resulting
parareal method will be faster relative to the serial method.

We have shown that the parareal algorithm is partic-
ularly effective for the single-cell case, where it attains
fast convergence to the serial solution and few alternatives
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Figure 4. Maximum difference in conduction velocity

between the parareal and serial solution as a function of
the number of iterations over a 12 s simulation on a one-
dimensional domain with a cycle length of 400 ms.
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Figure 5. Speedup of the parareal simulation as a factor of
the time required to run the serial simulation. The single-
cell simulations occur over 120 s, and the one-dimensional
simulations over 12s. Left: Speedup of the parareal al-
gorithm running on 16 cores for varying numbers of iter-
ations. Right: Speedup of the parareal algorithm running
for three iterations on varying numbers of processors.

for leveraging parallel hardware are available. The one-
dimensional tissue simulation does not achieve the same
convergence rate due to reduced wave propagation speed;
this issue likely is caused by the relatively large time step
size of the coarse operator [8|]. Further investigation is re-
quired to find a way to mitigate this reduced wave speed.

Parareal is only one of many methods for parallelization
in time [9-11]]. Further investigation of alternative meth-
ods is needed to compare their accuracy and efficiency for
cardiac problems with parareal. Promising applications of
these methods include problems that require long simula-
tion times, such as the effects of circadian rhythms, devel-
opment of tissue remodeling, and long-term drug effects.
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